
0 Fermi National Accelerator Laboratory 
FERMILAB-Pub-86/114-A 
August 1986 

A Non-Commutative Geometry Model 
for Closed Bosonic Strings 

Siddhartha Sen 

School of Mathematics 

Trinity College, Dublin 2 Ireland 

R. Holman 

NASA/Fermilab Astrophysics Center 

Fermilab, P.O. Boz 500, MS209 

Batavia, IL 60510 

Abstract 

We show how Witten’s non-commutative geometry may be extended Lo describe 

the closed bosonic string. An ezplicit representation of the # and * product for closed 

strings is provided. 
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The possibility that string theories may provide us with a consistent unification 

of the forces makes it imperative that we understand the geometrical underpinnings 

of string field theories. Recently, Witten (I) has put forth the idea that string ge- 

ometry may best be understood by use of the algebraic structure contained in the 

BRST quantization of string fields c2) to construct a model of a non-commutative 

geometry(3). Similar notions have also been considered by the Kyoto groupt4). 

The idea of ref.(l) (henceforth known as I) has great intuitive appeal in the 

open bosonic string case but seems to need the introduction of the notion of a non- 

associative geometry in the closed string case. The Kyoto group is able to deal with 

closed strings with their modified geometry and Lykken and Raby15) have made 

attempts to amend the axioms in I to deal with this problem (although they must 

postulate the existence of objects that may,in fact, not exist!). 

Our purpose in this Letter is to show how the ideas in I can be extended in 

a natural way and then to use these extensions #to solve some of the problems 

associated with closed strings in this formalism. 

Let us first review the main ideas in I, restricting our discussion to oriented 

bosonic strings throughout. If Q is the BRST charge operator on string fields, then 

our object is to construct an associative product * on string fields which will give 

rise to a graded, associative algebra B on which Q acts as a derivation: 

Q(A * B) = Q(A) * B + (-)AA * Q(B). (1) 

Here A and B are string fields and (-) A is the grading of -4. One may think of A 

and B as “differential l- forms”, Q as an “exterior derivative”, and * as a “wedge 

product” (this only works if Q* = 0, which is true in the critical dimension). Fur- 

thermore, in order to construct an action, we will need an integral operator, which 

we call J, which is linear and also satisfies 

/A*B = (-)ABjB*A, (2) 

.f Q(A) = 0 (3) 

Eq.(3) is the statement of BRST invariance of the theory. 

With these notions in hand, we may define a generalized gauge invariance: 

6A = Q(t)+A*e-c*A, (4) 
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where t is the gauge parameter. We may also define a field strength F that is gauge 

covariant under (4): 

F = Q(A) +A*A. (5) 

Witten finds that the only non-trivial, gauge invariant actions for A are the Chern- 

Simons 2p + 1 forms. In particular, his J is such that only 

S(A) = /I A * Q(A) + ;A * A * A] 

is nonvanishing. 

How should the action of ir and j be chosen so as to give rise to a reasonable 

theory? First we note that reparametrization invariance can be replaced by BRST 

invariance so that a particular point (such as o = ~/2, which is the midpoint of the 

string in Witten’s parametrization) can be singled out and left and right halves of 

the string, S,,Sn identified. The * operation is then constructed so as to sew S, 

to TR if Sn coincides with TL (fig 1) (up to corrections for BRST invariance). JS 

is defined to be the operation that sews SE to SL (fig 2) (again, with appropriate 

modifications for BRST invariance). 

Having decided on what * and J should do, we must find a concrete realization 

of these operations. Let X’(o,r) and 4(o,r) be the string coordinates and the 

bosonized conformal ghosts respectively. The action is given by 

I = ~jd’oa’X’(o,r)a,X~(o,r) + &I 

dZc+“q5(cr, T)&~(u, T) - 3iEl4(a, T)]. (7) 

where the integrals are over the world-sheet and the 3iRC, accounts for the conformal 

anomaly (R is the world-sheets’ scalar curvature). 

We are now ready to construct an integral for closeil strings(though the theory 

that arises from it is not consistent without modifications). The first step is to 

choose a surface together with a metric on it that is flat near its boundary. For 

now, we also demand that the boundary components meet at right angles. Witten 

chooses a hemisphere H. We then define 

b/, DX@(o)D~$(u)exp (-I) (8) 
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This tells us to evaluate the path integral by only summing over paths on H with 

boundary conditions (b.c.‘s) specified by %7. At this point we pause to note that J 

depends crucially on the surface chosen. This freedom of choice and a similar one 

in the definition of * will be most important for us in the sequel. 

Next, we use the definition of $ for closed strings to define it for open ones. 

Instead of H, choose a new surface, a quarter sphere , whose boundary consists of 

two segments Si and Ss. On Si the b.c.‘s are chosen to be those determined by the 

open string Q that we wish to integrate, while those on Sr correspond to standard 

open string b.c.‘s. The two segments are chosen to meet at right angles and to have 

zero extrinsic curvature. 

How is * defined? As before we pick a surface over which we impose b.c.‘s on 

the paths contributing to the path integral. Following I, we pick a hexagon on whose 

boundary components we specify open string states which we label A, GI, B, Gz, F, G3. 

The G; are string states with standard b.c.‘s.The dependence of the path integral 

on F defines a functional of the string coordinates and ghosts that is linear in A and 

B. We define this functional to be A * B, and note that this definition also depends 

on the surface chosen. 

Why can’t this procedure be carried through for closed strings? The immediate 

generalization of * to closed strings (i.e. a product that involves the selection of one 

point, on the string) gives rise to a commutative but non-associative product. Thus, 

we should regard closed strings as having tluo points (0 = T,t, say, if we let D run 

from -s to +s) selected and being joined by two segments. The product of two 

closed strings can then be viewed as the joining of the strings at the two preferred 

points along matching segments (fig 3). An immediate consequence of this choice 

is that closed bosonic fields are bilocal objects. The action of $ on closed string 

fields is taken to be the operation of setting equal the two segments connecting the 

preferred points and integrating (fig 4). 

The fact that two points are selected gives rise to the following problem. In the 

open string case, the ghost numbers of physical string states are -i while g(A * B) 

was found to be g(A) + g(B) + $ i.e. g(*) = $, and a similar calculation shows 

that g(J) = -$. For closed strings, the physical states have ghost number -I and 
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the existence of two points changes the 3/2’s to 3’s, and precludes the use of the 

Chcrn-Simons action for closed strings (we shall review these calculations below). 

Our modifications of * and $ will not affect the bilocality of closed string fields, 

but will be able to modify the ghost numbers of * and J. The crucial point is that 

these operations depend explicitly on the surfaces we choose for their definitions. 

Let us first show how g(f) depends on the integrated curvature of the defining 

surfaces. Consider the anomalous conservation law for the ghost current K” E $“‘$J 

Let S be an arbitrary surface and perform the following path integral: 

/, DX’(o)D+)ezp(-I) /j&K’ + g] = 0 (10) 

After an integration by parts, the first term results in the component of K” normal 

to 8s integrated over 8s. This then changes the b:c.‘s of the path integral to those 

specified by -ig(Q)Q. The last term changes the b.c.‘s to those given by (g Js R)Q. 

Finally, linearity of j tells us: 

-i(g(Q) - ;J,R) /Q = 0 

which implies that J Q? vanishes unless g(Q) = & Js Ii!. For a quarter sphere the 

integral of R is s and J carries ghost number -3/2. This can be modified in a 

variety of ways. Let us consider two possibilities. First, we can add h handles 

to the surfaces discussed above. This will change g(J) by 3h (y) in the case of 

a hemisphere (quarter-sphere). We may also add b boundaries (i.e. holes) to the 

hemisphere which changes g(J) by F. 

We may also relax the condition that the surface S be embedded with zero 

extrinsic curvature if we modify the conformal anomaly appropriately. This changes 

the ghost number of j to 

where n is the eztrinsic curvature and the relative normalization is determined by 

computing ghost zero modes on a surface with boundary, such as a disk(“). 
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Does this notion of integration correspond to what we want? To see that it does, 

let’s replace the modified hemisphere by a flat surface having two points at which 

the curvature is singular (fig 5). In the limit that the size 6 of the flaps approaches 

zero, we are left with the intuitive picture of closed string integration discussed 

earlier. Furthermore, we are now able to compute what the ghost insertions should 

be in order to preserve BRST invariance. If we take the curvature singularity points 

to be -t and ; then we must insert: 

expiXi$(-5) expiXr4(5, 

with X1 + AZ = g(f). We will now show that these insertions suffice in order for the 

theory to be BRST invariant for appropriate choices of g(J). 

To show that $Q(%J) = 0 for any closed string state \k, we write out $* &s a 

path integral: 

f ‘# cz / DX~(a)Dc#,(+iX’“[f) ’ opw) - -wn - -J)P($(o) - $(n - u))]x 

[,iAd-f) -: o~oa(x~(-u) - X’(o - r))6(4(-0) - do - ~))lwy4). (14) 

We may now simplify our task considerably if we note the following facts. From 

eq.(14), it can be seen that we are treating the closed string as if it were composed 

of two open strings, one parameterized from 0 to n and the other from --x to 0. 

These open strings are then joined at 0 and n(= -s mod 2x). The former open 

string has a ghost insertion eiAlm(q) at o = t while the latter one has an insertion 

@2+(-f) at o = -: (the midpoints of the two open strings). Thus, to show that 

f &(‘I’) = 0 we can reproduce the proof in I using the new ghost insertion (with 

A; replacing -i). Eqs.(32, 33) of I then imply that J Q(q) = 0 only if A; + i is an 

odd integer. Since Xi + As = g(f), this implies that g(J) must also be odd. These 

insertions also insure that f QL, QR(\~) vanish. 

We now turn to the modification of *, treating the open string case first. In this 

case, we use the same hexagon as before but now attach handles and boundaries 

to its interior, modifying its ghost number as for g(f). We may also allow the 

boundary components to have non-zero extrinsic curvature. The ghost number 

g(t) then becomes an arbitrary parameter. 
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For closed strings, we again consider them to be made up of two open strings 

with parameterization [0, x] for one and [-n, O] for the other. As in I, we replace the 

open string hexagon by a rectangle with a wedge cut into it (fig. 17 in I). We then 

construct the mirror image of this surface and set the two side by side, with the 

open end of the wedges facing each other. Finally, we identify the relevant points on 

both rectangles and wedges so that each side represents a closed string. Since the 

open string surface could be modified so as to make g(*) arbitrary, the same is true 

for closed strings. From the above picture, we see that we have ghost insertions at 

o = +$ in the definition of * for closed strings. We write this as &+(+~)e”~+l-il 

with ni +~a = g(e). Eqs. (1,2) can be shown to hold as in I, as can the associativity 

of *. 

We have shown by explicit construction that g(j) and g(*) can be chosen arbi- 

trarily for both open and closed strings. We now use this in order to construct an 

interacting closed bosonic string action. 

Let us first enumerate the constraints on such actions. First they must be gauge 

invariant under the transformations of eq.(4) ( or some suitable modification thereof; 

see below). Second, we have only two free parameters, g(*) and g(J) to use. Finally, 

we must still have that Q has ghost number one, while physical closed string states 

have ghost number -1. If we are to include an explicit kinetic term for the string 

fields (this may not be necessary or desirable; see ref. (7)), then the action can only 

be some modification of the Chern-Simons three form in eq.(6). If we wish to keep 

eq.(6) as the closed string action, we must choose surfaces such that g(*) = +2, 

g(J) = -1 (note that this value of g( ) * is compatible with the one required by the 

gauge transformation law of eq.(4). Also note that g(J) is odd as required by BRST 

invariance). If, however, we choose to consider a modified kinetic term (as in ref. 

(5)) such as 

f A * [c QIA, (15) 

where F is the fermionic antighost, and modify the gauge transformation law appropriately(“) 

we find that g(j) = -3, g(*) = +3 IS re q uired so that the cubic interaction term 

have non-zero integral. Again we note that g(J) is odd in this case. In this case 

we need only consider surfaces with no extrinsic curvature (in fact, the hemisphere 
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described earlier can be used to construct $‘), while this was not the case for the 

previous case above. 

For completeness, we write out the cubic interaction term out explicitly: 

l-I va-~) - %+,(A - n))6(#(-A) - $(A - T)) (16) 
x=0 

where X,?, & i = 1,2,3 are the coordinates and ghosts for the three strings. Note 

that due to the 6 functions, it is not necessary to specify which 4 is present in the 

ghost insertions. 

To conclude, we have shown how the ideas of I could be extended to generate 

an integral and an associative product relevant for closed bosonic strings. We have 

also extended the definitions of $ and * for open strings, which may be important 

when actions without kinetic terms are considered(r). Using the freedom of choice 

in g(*) and g(i), we have shown that the Chern-Simons 3-form or modification of 

it is the only possible gauge invariant action for closed bosonic strings. 

A possible flaw in our formulation of closed strings is that the on-shellconstraint 

that the number of right movers equal the number of left movers is not obviously 

satisfied. One way to see whether this is true or not is to construct the Fock space 

of our theory following Gross and Jevicki (‘1. This work is now in progress19), as is 

a calculation of Virasoro-Shapiro amplitudes following Giddings(i”l 
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Figure Captions 

Fig. 1: The * operation for open strings. The point u = ~5 is selected and 

S * T sews the left half of S to the right half of T if Ss coincides with TL. 

Fig. 2: The $ operation for open strings. $ S sews SL to Sn. 

Fig. 3: The + product for closed strings. The points (T = it are selected and if 

the right half of S coincides with the left half of T we sew 5’~ to Ts. 

Fig. 4: The j’ operation for closed strings. This also sews SL to Sn. 

Fig. 5: Representation of the closed string J via a modified hemisphere that is 

flat except for two singular points at o = 5:. When 6 tends to zero, we are left 

with Fig. 4, but with computable ghost insertions at o = +t. 
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